3GPP TSG SA WG3 (Security) Meeting #86
S3-170124
6-10 February 2017, Sophia Antipolis (France)
revision of S3-17xabc
Source:
Huawei, Hisilicon
Title:
Protection of downlink NAS signallings before security activation
Document for:
Approval

Agenda Item:
8.4.1 Security architecture
1. Introduction

The proposed solution addresses the key issue #1.5 Integrity protection for the control plane between UE and network. Before NAS security activation, downlink message in some error cases, such as attach reject, TAU reject, identity request, etc., may lead to UE’s behaviour which may cause DoS attack to UE or leak UE’s permanent identity. So, these downlink messages should also be protected. The proposed solution protects the downlink message using asymmetric cryptography so that these messages can not be tampered, forged or replayed by an attacker.
2. Proposal

It is proposed to approve below pCR.
***********************Start of the first change************************
5.1.4.13

Solution #1.13: Security of NAS signallings before security activation
5.1.4.13.1

Introduction
The solution addresses the key issue #1.5 Integrity protection for the control plane between UE and network.
The first attach/TAU request is sent before NAS security activation, and it is easy to be modified by man-in-middle-attack, which may lead to “bidding-down” attack or “DoS” attack. The solution in clause 5.1.4.13.2.1 will detect whether there is any modification.
The downlink messages in some error cases, such as Attach reject, TAU reject, Identity request message, etc., can also be sent before NAS security activation, and they are easy to be tampered with, forged and replayed by an attacker. A forged or replayed Attach/TAU reject message may lead UE into a “no-service” state, which is a form of DoS attack to the UE. And, a tampered Attach/TAU request message, may trigger network to send an Identity request message to retrieve UE’s IMSI, and the attacker in the middle can get the IMSI in Identity response sent by UE if it is not protected. The solution in clause 5.1.4.13.2.2 will address these problems.
5.1.4.13.2

Solution details
5.1.4.13.2.1 Protection of the uplink message
The solution is similar to the solution in clause 7.2.4.4 of TS 33.401 [31].

The core network calculates a hash value of the attach/TAU request when it receives an unprotected attach/TAU request. The calculated hash value is sent back to the UE in NAS SMC message which is integrity protected (but not ciphered). The UE also calculates a hash value. The UE can check whether the attach/TAU request is modified or not by comparing its calculated hash value with the received hash value. If two hash values are different, the UE will resend the attach/TAU request in NAS Security Mode Complete message which is integrity protected, and the core network will complete the on-going attach/TAU procedure.
5.1.4.13.2.2 Protection of the downlink message
It is assumed that, for this solution, AMF is provisioned asymmetric cryptography parameter, and has the capability to generate signature based on the asymmetric algorithm. It is also assumed that UE have capability to validate the signature. The example of crypto to be used could be public/private key pair based on RSA/ECC (Solution #2.12), certificate in PKI (rf. Solution #4.1 or #7.2), and ID, SSK, PVT in IBC (rf. Solution #2.14).
In the solution, the response message is mainly protected by a signature with fresh value NONCE1 and NONCE2, which protects the message from being tampered with, forged or replayed by an attacker. However, the protection alone is not enough as there is an attack scenario that an attacker acting as man-in-the-middle could modify the GUTI in request message into an unknown identity for AMF so that AMF will respond the Identity Request message to UE. Since the Identity Request message is signed by the AMF legally, UE will return its IMSI to AMF, which may be eavesdropped by the attacker. So, a hash value of request message is needed in the response message. It is used for protecting the Attach/TAU request message from being tampered with by the attacker.

[image: image1.emf]UEANAMFAttach/TAU request (NONCE1)Attach/TAU/SR RejectThe request should be rejected/GUTI is unknownConstruct response messageCompute HASH(request) Get H2Holding asymmetric cryptography Attach reject/TAU reject/Identity Request(H2, NONCE1, NONCE2, Sm)Compute signature SmValidate signature SmCheck ifH1 = H2If check fail, UE could generate some treatmentCompute HASH(request)Get H1Check NONCE1Generate NONCE2

1. UE sends Attach/TAU Request message to AMF including NONCE1 generated randomly by UE. Meanwhile, UE computes a hash value H1 of the request message. UE will store NONCE1 and H1 for a while.
2. AMF receives Attach/TAU Request message, and may respond to the abnormal message due to some reasons, e.g. EPS services not allowed, etc. Or when UE is unknown in AMF, the AMF will request UE to return the IMSI. So, AMF will construct original Attach reject/TAU reject/Identity request message.
3. AMF also computes a hash value H2 for received Attach/TAU Request message.

4. AMF generates NONCE2 randomly, and calculates signature of Attach reject/TAU reject/Identity request message including H2, NONCE1 and NONCE2 using private key of AMF.
5. AMF sends Attach reject/TAU reject/Identity request message including H2, NONCE1, NONCE2, and signature.
6. UE receives the message, and extracts H2, NONCE1, NONCE2, and Sm. UE checks NONCE1 whether it is the same as what it sends. And UE validates the signature Sm using public key of AMF. UE checks whether H1 equals H2.
7. If any check fails in step 6, UE will know it is being attacked, and will generate some treatment, e.g. ignore the message, and re-select a RAN to access the network again.
5.1.4.13.3

Evaluation

tba
***********************End of the first change*************************

UE
AN
AMF
Attach/TAU request (NONCE1)
Attach/TAU/SR Reject
The request should be rejected/
GUTI is unknown
Construct response message
Compute HASH(request)
Get H2
Holding asymmetric cryptography
Attach reject/TAU reject/Identity Request(H2, NONCE1, NONCE2, Sm)
Compute signature Sm
Validate signature Sm
Check if
H1 = H2
If check fail, UE could generate some treatment
Compute HASH(request)
Get H1
Check NONCE1
Generate NONCE2

